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Abstract

Wireless sensor networks (WSNs) can span large geographical regions and collaboratively monitor environmen-

tal phenomena, e.g. forest fires. By designing a WSN to detect changes to such phenomena, current environmental

monitoring systems could be supplemented, if not replaced. This research focuses on incremental insertion events,

arising from the elevation of a single node’s sensor reading between two consecutive states of network operation.

Homology, a field of topology, is used to detect and differentiate between incremental insertion events of interest.

Particular homology tools are translated to a distributed environment for 2-dimensional WSN deployments. The

result is a novel distributed algorithm that can compute an incremental insertion event associated with a region

comprising n nodes in O(n) time, using O(n) storage, and O(n) data passed via messages. A small-scale,

laboratory testbed is developed to evaluate the algorithm. Deployment results indicate that only nodes in physical

proximity to an event are tasked, thereby conserving network resources and allowing multiple disparate events to

be simultaneously monitored. Further, transmission cost is shown to vary linearly with the size of the evolving

region, confirming one component of the formal analysis. 1

Index Terms

Distributed algorithms, event detection, sensor systems and applications, spatiotemporal phenomena, topology,

wireless sensor networks

I. INTRODUCTION

A wireless sensor network (WSN) is comprised of sensor nodes, tiny untethered computing devices, each

equipped with one or more custom or off-the-shelf sensors. Over the past decade, prototype WSNs have

been deployed to monitor avian habitats [1], [2], volcanoes [3], [4], coal mines [5], and water pipelines [6].

If properly designed, a WSN can be robust, self-organizing, scalable, and energy-efficient [7]. As sensor

node costs decrease and WSN power management improves, large-scale, long-term WSN deployments
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University of Maine; A. Abedi and F. Schwaner, Department of Electrical and Computer Engineering, University of Maine.
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become feasible, offering users unprecedented access to real-time, high resolution environmental data [8],

[9].

The goal of this research is to enhance environmental monitoring and management by developing

a distributed event detection algorithm for WSNs. Consider Figure 1, three chronological frames of the

1988 Yellowstone Forest Fires from August 16th to September 16th [10]. In the figure, regions are colored

to distinguish between the progressions of independent fires, e.g., the dark brown region represents the

spread of the North Fork Fire. The three frames reveal a number of changes the fires underwent, including

appearance (of a new fire), merge (of two or more existing fires), accretion (of an existing fire), and self-

merge (of an existing fire), or the merge of a fire with itself. Knowledge of these simple changes, along with

location information, could prove valuable to emergency management teams. For example, the merging

of two fires could block an existing evacuation route, thereby requiring a new evacuation route to be

identified. With such applications in mind, this research focuses on detecting events like those in Figure

1. Attention is restricted to incremental insertion events, events arising from the elevation of a single

node’s sensor reading between two consecutive states of network operation. With this foundation, more

complex events can be addressed.

appearance

self-merge

accretion

merge

Fig. 1. Three frames of the Yellowstone forest fires of 1988, spanning one month, where colored regions distinguish between the progressions

of independent fires. This research addresses some of the changes these fires underwent, as shown above.

Homology is a field of algebraic topology used to classify the connectivity and orientation of topological

spaces. If two topological spaces are not homologically equivalent, then they cannot be topologically

equivalent. In the context of the events in Figure 1, if two different states of (the evolving region

corresponding to) a fire are not homologically equivalent, then the fire has undergone a topological

change. Homology is able to differentiate between the events in Figure 1, thereby supporting event

detection relevant to this research. Since algorithmic methods of homology have only been established for

a centralized computing environment, one key step of this research is translating fundamental homology
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concepts to a distributed environment.

As a surrogate for an environmental deployment or large-scale event detection, a laboratory testbed of

a 2-dimensional, wirelessly connected sensor network is developed. Events are modeled as a sequence

of bright lights delivered over the sensors. A distributed homology algorithm is developed to compute

ongoing changes detected by the WSN. To evaluate the algorithm, the data transmitted per node per

computed change are captured and analyzed to determine localization of computation and experimental

communication complexity. In the remainder of the paper, we summarize related work and the funda-

mentals of homology that will be used in this research (Section II), develop and analyze the algorithm

(Section III), outline the testbed set-up and present experimental results (Section IV), and conclude with

a discussion of results, summary of findings, and future work (Section V).

II. BACKGROUND

A. Related Work

This research lies at the intersection of topological event detection, distributed algorithms, WSNs,

and homology. Given the challenges associated with embedding an algorithm into a WSN, ongoing

research commonly addresses the development in stages. Jiang and Worboys formalized a framework

for topological event detection, representing each stage of the space under investigation as a tree [11].

Between two states of a space, the corresponding tree representations infer one or more topological

events. In later work, Jiang and Worboys embedded the model into a simulation environment and used

node data to construct and update the tree representations in a distributed manner [12]. Funke used

the hop count metric to detect holes and boundaries in a WSN’s geometric distribution as a means of

routing messages more efficiently [13]. In this research, each of one to four beacon nodes is responsible

for collecting hop count data from the remaining nodes in the network. This data is used to construct

approximations of isolines. These approximated isolines identify external and internal (holes) boundaries

of the WSN. In follow-up work, hole detection is distributed using a rubber-banding procedure [14]. Liu

et al. used a dual-space approach to detect half-planes, maintaining data by a topological line sweep

[15]. Three distributed solutions were proposed in the discussion: limiting computational cost through

clustering, localizing dual space data required by nodes, and incremental construction of dual-space.

Specific to homology, a centralized algorithm was developed to characterize the coverage of a WSN [16].

The algorithm was tested in a simulation environment using open source software available through the

Computational Homology Project (CHomP) [17].The authors discussed the need to develop a distributed

solution. Research beginning with a distributed model include: Fang et al., with a distributed hole detection

algorithm, using angle-of-arrival data of messages between nodes [18]; Sadeq and Duckham [19], with a

tree representation method like that in the work of Jiang and Worboys.
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The research presented in this paper provides a distributed event detection algorithm using WSNs.

With the exception of [15], related research developments have been tested in simulation environments.

Since simplifying assumptions of a simulation environment, e.g. radio propagation modeling, can lead to

significantly different outcomes from a true deployment, the authors elect to evaluate the algorithm via

testbed deployment [20], [21].

B. The Betti Numbers
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Fig. 2. Five stages of a simplicial complex as it evolves over time, and the corresponding 0th and 1st Betti numbers of each stage of the

simplicial complex. As the figure indicates, h0 and h1 detect the number of components and holes of a simplicial complex, respectively.

A topological invariant is a property of a topological space that does not change when any home-

omorphism, continuous mapping between two topological spaces with continuous inverse, is applied to

that space [22]. The Betti numbers are topological invariants that measure the degree of connectivity

of a topological space, including the number of connected components and the number of holes or

genus [23]. Computation of the Betti numbers is machine tractable when the topological space under

investigation is a simplicial complex, a collection of simplices, vertices, edges, faces, etc., in which the

intersection of any two simplices is either empty or a simplex contained in the simplicial complex [24].

For j > 0, the jth Betti number of a simplicial complex X can be obtained through the equation:

hj(X) = Sj(X) − Ij(X) − Ij−1(X) [25]. Here, Sj(X) is the rank of the basis of j-simplices of X and

Ij(X) is the rank of the incidence matrix between the j-simplices and (j-1)-simplices of X . When the

topological space is understood or not required in the discussion, the jth Betti number is notated hj .

Restricted to two dimensions, for each j ≥ 2, hj(X) is identically zero [26]. The two non-trivial Betti

numbers, h0(X) and h1(X), represent the number of connected components of X and the number of

holes in X , respectively [27]. Figure 2 illustrates an evolving simplicial complex and the corresponding

zeroth and first Betti numbers to clarify the role of each invariant. For a connected component, h0(X) is

equal to one and therefore, the formula for h1(X) can be written [28]:
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h1(X) = −V (X) + E(X)− F (X) + 1 (1)

Here, S0(X), S1(X), and S2(X) are written more simply as V (X), E(X), and F (X), the ranks of the

basis of vertices, edges, and faces, respectively. By substituting local node data for incidence matrices,

nodes are alleviated of O(n2) storage and O(n3) time, for a WSN of n nodes [29]. (See Section III-D for

analysis of storage and time complexity.) This substitution matches the goals of computational geometry,

to replace computationally intensive operations with low-cost, intuitive operations when possible [30].

The jth Betti number of a topological space at time t is notated hj(X, t).

III. DEVELOPMENT

A. Linking Homology to the WSN

The communication graph is a graph in which vertices and edges correspond to sensor nodes and

communication links between sensor nodes, respectively [31]. Data about the communication graph can

be shared across nodes to support message routing. The Delaunay graph is a well-documented graph

that has many good properties as a communication graph and is also a simplicial complex [32]. K =

(v(K), e(K), f(K)) is the graph illustrated in Figure 3. Assuming the vertices and edges represent nodes

and communication links, respectively, K is a communication graph and a Delaunay graph. Given this

dual role, K can be used to route messages between sensor nodes, and K’s homology can be computed,

as well as the homology of subgraphs of K.
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Fig. 3. Three stages of a WSN, where each node coincides with the point of intersection between two line segments. In the figure, D is

the scalar field being monitored, D1 is that part of the domain above sensor threshold (illustrated as grey regions), K is the communication

graph of the WSN, and K1 is that part of the communication graph induced by D1.

A (spatiotemporal) scalar field is a spatiotemporal region in which every point has an associated scalar

value [33]. Formally, it is a function s with spatiotemporal domain D × T and scalar codomain R such
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that every point (d, t) ∈ D×T is assigned a unique scalar value s(d, t) ∈ R. This scalar value is tied to a

measurand, a measurable physical property, such as light intensity, chemical concentration, or temperature.

A Boolean scalar field is a scalar field in which the codomain is a two element set. In this work, a Boolean

scalar field is established by setting a measurand threshold (e.g. 200oF ), mapping (d, t) to 1 if the scalar

value at (d, t) exceeds the threshold and 0 otherwise. For each time t, D can be expressed as two disjoint

sets, D = D0 ∪D1, where Di = {d ∈ D | s (d) = i}. D1, that portion of the scalar field above threshold,

is comprised of zero or more connected components. These components (grey filled contours in Figure

3) and the changes they undergo are precisely what this work characterizes.

For each sensor node n in the set of nodes N , deployed in the spatial domain D, there exists a unique

sensor value at each time t. We assume the sensor value and corresponding point value are the same,

i.e., if the sensor’s position coincides with dn ∈ D, the sensor value at time t is s(dn, t). The set N

can be separated analogously to the set D, i.e. N = N0 ∪N1 where N i = {n ∈ N | s (dn) = i}. Define

K1 = (v(K1), e(K1), f(K1)) to be the induced graph that results when K’s nodes are restricted to N1

i.e. v(K1) = N1, e(K1) = {(a, b) ∈ e(K) | a, b ∈ N1}, and f(K1) = {(a, b, c) ∈ f(K) | a, b, c ∈ N1}.

K1 is a simplicial complex whose union comprises zero or more components and approximates D1.

D, D1, K, and K1 are represented in Figure 3 at network times t1 < t2 < t3, to illustrate the relationship

between the scalar field and the Delaunay graph. Proceeding from left to right, the Betti numbers of K1

and D1 are: (i) h0(K
1, t1) = 2, h1(K

1, t1) = 0 and h0(D
1, t1) = 2, h1(D

1, t1) = 0; (ii) h0(K
1, t2) = 1,

h1(K
1, t2) = 1 and h0(D

1, t2) = 1, h1(D
1, t2) = 0; and (iii) h0(K

1, t3) = 1, h1(K
1, t3) = 0 and

h0(D
1, t3) = 1, h1(D

1, t3) = 0. Notice that the Betti numbers agree for D1 and K1 at times t1 and t3

but differ at time t2: K1 has a hole but D1 does not. Such discrepancies arise from approximating a

continuous scalar field with a finite scalar field. Identifying the appropriate level of resolution, i.e. density

of sensor nodes, depends on the needs of the emergency management team interpreting the data. For

example, if D1 represents an evolving fire, then detecting the gap in D1 at time t2 is meaningful only if,

e.g., the gap is broad enough to act as an escape route.

B. Detecting Events

Figure 4 illustrates incremental insertion events of interest. Each topological event involves a change to

K1, induced by D1, which results in a change to one of the first two Betti numbers, ∆h0 and ∆h1. Here,

∆ is used as in calculus, i.e. ∆hi = hi(X, t2)−hi(X, t1). In each instance, ∆h0 and ∆h1 take on integer

values. While appearance, hole loss, and accretion uniquely fix ∆h0 and ∆h1, merge and self-merge allow

for a range of values, depending upon the number of distinct components that merge in the case of the

former, and the number of “fingers” of a single component that merge in the case of the latter. Hence,
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the inequalities in Figures 4(iii) and 4(iv). The inverse mapping for each event is an incremental deletion

event. Incremental deletion events have been investigated in previous and ongoing work [11], [19], [34].

Detecting incremental deletion events through WSN testbed deployments is in progress.

self-mergemergeappearance hole loss accretion

(i) (ii) (v)(iv)(iii)

∆h0=1, ∆h1=0 ∆h0=0, ∆h1=-1 ∆h0<0, ∆h1=0 ∆h0=0, ∆h1>0 ∆h0=0, ∆h1=0

Fig. 4. The incremental insertion events investigated in this research in terms of changes to h0 and h1.

By Figure 4, computing ∆h0 and ∆h1 is sufficient to determine the incremental insertion event

associated with an evolving component of K1. While ∆h1 is explicitly computed from previous and

current values of h1, ∆h0 is determined by counting those components impacted by an incremental

insertion event. The WSN does not maintain global values of h0 and h1 i.e. values that correspond to the

total number of components and total number of holes associated with K1.

Figure 5 presents the data elements required to compute h0 and h1. In frames (ii) and (iii), gray

regions indicate elevated activity relative to sensor threshold. The link of a vertex n, notated Lk(n) =

(v(Lk(n)), e(Lk(n))), is the simplicial complex comprised of vertex n’s neighbors, and edges between

vertex n’s neighbors. When the node in question is clear, notation simplifies to Lk. In Figure 5(i), the vertex

and edge sets of node 1’s link are v(Lk) = {2, 3, 4, 5, 6, 7} and e(Lk) = {(2, 3) , (3, 4) , (4, 5) , (5, 6) , (6, 7)},

respectively. Referring to Figures 5(ii) and 5(iii), that part of the link induced by the region of elevated

activity is notated Lk1. Thus, the corresponding vertex and edge sets are v(Lk1) = {3, 4, 5, 7} and

e(Lk1) = {(3, 4) , (4, 5)}, respectively. In words, v(Lk) is the set of neighboring nodes, e(Lk) is the set

of neighboring communication links, v(Lk1) is the set of neighboring nodes above threshold, and e(Lk1)

is the set of neighboring communication links where each node forming the link is in v(Lk1).

Each component of K1 can be built up by adding link data incrementally. Between times t1 and t2, 2

components, 3 and 7, merge to form component 1. Thus ∆h0 = 1− 2 = −1 < 0. To compute h1, node 1

collects neighbor data, computes the values of V , E, F , and applies Formula 1. Since existing components

and Lk1 are mutually disjoint, the rank of the basis of k-simplices of the new component equals the sum

of the ranks of the bases of k-simplices of contributing components and the rank of the basis of (k− 1)-

simplices of Lk1. The values in this instance are computed as follows: V (1) = V (3)+V (7)+1 = 3+1+1 =

5, E(1) = E(3) +E(7) + V (Lk1) = 2+ 0+ 4 = 6, and F (1) = F (3) +F (7) +E(Lk1) = 0+ 0+ 2 = 2.
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Thus, h1(1) = −V (1) + E(1) − F (1) + 1 = −5 + 6 − 2 + 1 = 0 (confirming that there are no holes in

component 1, as shown in Figure 5(iii)) and therefore, ∆h1 = 0− (0 + 0). Given the values of ∆h0 and

∆h1, the event occurring between t1 and t2 must be a merge. Using this process, the distributed code is

developed.
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(i) Before network operation

1

5

6

2 3

7 4

Lk

Fig. 5. Component 1 results from the merge of components 3 and 7 at node 1, between times t1 and t2. The link of node 1, Lk, is

illustrated to better understand the supporting datasets, v(Lk), e(Lk), v(Lk1), and e(Lk1).

C. Algorithm

During an execution of the algorithm, each node can be in one of four states, INITIALIZE, WAIT,

CRITICAL, and UPDATE. After INITIALIZE is complete, a node must be described as a wait node, a

critical node, or an update node. Only one node can be in its CRITICAL state at any stage of an algorithm’s

execution. Three different events (interrupts) can occur to, or be scheduled by, each node: sample timer

fires, receive message, and response timer fires. The first event indicates that the environment should be

sampled via a designated sensor, the second event indicates that a message has been received, and the

third event indicates that a message needs to be resent. There are four types of messages that can be

sent: data request, acknowledge receipt of data request (ACK), node data, and update. The first message

is transmitted by a node in its critical state; the second message, by a node in update or wait state; the

third and fourth messages, by a node in update state. Node data and update contain the following data

elements: component C, vertex count V , edge count E, face count F , the first Betti number h1(t1), and

∆h1. Flow charts of the distributed algorithm are presented in Figures 6 and 7. Each individual process,

required task or event, is numbered to ease reference. For example, the transmission of node data by a

node in wait state (Figure 6 will be referred to as STATE:WAIT 2.1.

WAIT: A wait node sets its sample timer. When the sample timer fires, the node polls the environment

through a designated sensor on its sensor board and enters CRITICAL state if sensor status has risen
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STATE:INITIALIZE

Ini�alize
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∆h0=∆h1=h1(t1)=h1(t2)=0
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Event
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Data 
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Y

N
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Transmit node data
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Y

Task

Start response !mer

Task

Store data
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Y

STATE=UPDATE
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0 0 1 2 3

2.1 2.2

Fig. 6. Flow charts of the INITIALIZE and WAIT states of the algorithm, where each required task and event is numbered for clarity.

above threshold. If sensor status is below threshold, then the node resets its sample timer and remains in

WAIT state. If a wait node receives a data request message, and if its sensor status relative to threshold is

high, then it transmits a node data message to the critical node and sets a response timer. If the response

timer fires, this message is resent. If a wait node receives an update message, it transmits and ACK and

stores the data if its sensor status relative to threshold is high.

CRITICAL: The critical node transmits a data request to each neighbor. As neighbors respond, the

critical node builds v(Lk1) and e(Lk1) from v(Lk) and e(Lk). For each unique existing component

contributing to the new component, V , E, and F are updated appropriately. After computing h1, ∆h0,

and ∆h1, as illustrated in the previous section, the critical node proceeds to UPDATE state.

UPDATE: An update node starts a response timer and broadcasts an update message to each of its

neighbors. If an ACK is not received for a particular recipient node, the message is resent. If an update

message is received, the node ACKs the transmitting node. After the update node has received ACKs

from all of its neighbors, the node proceeds to WAIT state.
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Fig. 7. Flow charts of CRITICAL and UPDATE states of the algorithm. The numbering convention is the same as in Figure 6.

D. Analysis

This section analyzes the algorithm to determine the worst case time complexity, storage complexity,

and message complexity. A key assumption is that the degree of the deployed WSN’s communication

graph, Delaunay graph, is bounded by some integer k, independent of the number of nodes in the WSN, n.

This assumption is reasonable for grid deployments, or randomized deployments in which a pathological

geometric distribution occurs with low likelihood [32].

Theorem: The algorithm computes an incremental insertion event for a component comprised of n nodes

in O(n) time.

Proof: Let k be the maximum degree of the communication graph of the WSN. Steps STATE:CRITICAL

1.2 and STATE:UPDATE 2.1 comprise the highest time complexity, since the node in question must

evaluate whether a neighbor has transmitted a node data or ACK message. Using a standard quadratic

time search, this process is O(k2) in each instance. Since only n nodes have sensor reading above threshold,

(n− 1) nodes will execute STATE:UPDATE 2.1 and the critical node will execute steps STATE:CRITICAL

1.2 and STATE:UPDATE 2.1. In other words, each of n nodes requires constant time to participate in the

computation. The result follows.

Theorem: The algorithm computes an incremental insertion event for a component comprised of n nodes

using O(n) storage.

Proof: Let M be a constant bound for simplicial complex data, component membership data, topology
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data, messages en queue, and supporting data (operating system, source code, local address data) stored

at each node; let k be the maximum degree of the WSN’s communication graph. Clearly, an upper bound

for the total storage required is Mkn. The result follows.

Theorem: The algorithm computes an incremental insertion event for a component comprised of n nodes

using O(n) transceived data.

Proof: There are five mutually exclusive node types that potentially contribute to the total message

complexity, associated with computations: the critical node Crit, the critical node’s neighbors above

threshold v(Lk1), non-neighbors of the critical node that belong to the evolving component v(C) −

v(Lk1)−Crit, neighbors (hence below threshold) of the evolving component Nbr(C), and non-neighbors

of the evolving component v(K)−Nbr(C)− v(C), where Nbr notates nodes that neighbor the node(s)

in question. Let the maximum number of neighbors for any node in the network be k, total transmitted

data be Tx, total received data be Rx, the cost of a data request or ACK message be m1, and the cost of

a node data or update message be m2.

For each node, data transmission occurs if STATE:WAIT 2.1, STATE:WAIT 2.2, STATE:WAIT 3,

STATE:CRITICAL 0, STATE:UPDATE 0, STATE:UPDATE 1, or STATE:UPDATE 2.2 is executed. As-

suming retransmission only contributes constant cost to total transmission (and consequently, to total

reception), STATE:WAIT 3 and STATE:UPDATE 1 are excluded from the analysis. Bounds for transmis-

sion costs per node type are:

Tx(Crit) ≤ 2m1k +m2k (Cost of STATE:CRITICAL 0, STATE:UPDATE 0, and STATE:UPDATE 2.2)

Tx(v(Lk1)) ≤ m1(k + 1) +m2(k + 1) (Cost of STATE:WAIT 2.1, STATE:WAIT 2.2, STATE:UPDATE

0, and STATE:UPDATE 2.2)

Tx(v(C) − v(Lk1) − Crit) ≤ m1(k + 1) + m2k (Cost of STATE:WAIT 2.2, STATE:UPDATE 0, and

STATE:UPDATE 2.2)

Tx(Nbr(C)) ≤ m2k (Cost of STATE:WAIT 2.2)

Tx(v(K)−Nbr(C)− v(C)) = 0

Since there is one critical node, a maximum of k neighbors above threshold, n−k−1 nodes remaining

in the component, and an upper bound of kn for nodes neighboring the component, Tx ≤ 2m1k+m2k+

[m1(k + 1) +m2(k + 1)]k + [m1(k + 1) +m2k](n− k − 1) +m2k
2n, which reduces to:

Tx ≤ (m1k +m1 +m2k
2 +m2k)n+m1k +m2k −m1
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In a similar fashion, the total received data during the computation is bounded by:

Rx ≤ (m1k
2 +m1k +m2k +m2)n+m1k −m2

Since total message complexity is proportional to Tx+Rx, and m1, m2, and k are constants, the result

follows.

Thus, worst case time, storage, and message complexity are O(n) for an execution of the algorithm

involving one incremental insertion to a component comprised of n nodes. Message complexity outcomes

are partially confirmed by testbed results in Section IV-B.

IV. EXPERIMENT

A. Testbed Set-up

Crossbow’s TelosB mote is an open source platform designed to enable and accelerate WSN experi-

mentation and understanding. TelosB is IEEE 802.15.4/ZigBee compliant, has a data rate of 250 kbps,

an 8 MHz TI MSP430 microcontroller with 10kB RAM, and 1MB external flash for data logging [35].

The TelosB motes in this experiment are equipped with light sensors and run TinyOS 1.1.10, an open

source, component-based, energy-efficient operating system developed by UC Berkeley which supports

large scale, self-configuring sensor networks [36].

An experimental testbed of TelosB motes is developed at the Wireless Sensor Network Laboratory

(WiSe-Net) at the University of Maine Department of Electrical and Computer Engineering [37]. The

primary goals of the testbed are to validate the algorithm, confirm localization of computation, and

determine the relation between the communication cost and component size of topological events being

computed. Since transception draws more power than internal processing, and transmission and reception

costs are roughly equivalent for the TelosB, overall network cost is assessed through data transmission

per node, in bytes [36]. Deployments consist of one 9-node deployment and two 16-node deployments.

Nodes are configured in square grid and randomized geometries. Over the 3 WSN deployments, a total

of 50 event trials are conducted. For each event trial, a sensor node is exposed to light, either creating a

new component or altering an existing component, thereby simulating one of the five topological events

of interest. Groups of event trials are executed sequentially to better simulate evolving environmental

phenomena and to confirm the algorithm operates correctly over time. Prior to each deployment, MATLAB

R2009b is used to determine precise node locations, generate the Delaunay graph of the WSN, and parse

this data to node-level Delaunay information [38]. Code corresponding to the second task makes use of

algorithms available through the open source Computational Geometry Algorithms Library [39].

Twelve consecutive event trials for the 16-node, grid deployment are shown in Figure 8. Results

for the remaining 50 trials prove similar and are not presented for space reasons. Filled white circles
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Fig. 8. Twelve consecutive event trials for a 16-node testbed deployment of TelosB motes, ordered from left-to-right, top-to-bottom. A

white circle with dashed circumference indicates that light has been delivered to the node shown for the current event trial. All other circles

indicate the light was delivered during a previous event trial. White edges/faces do not represent delivery of light to the WSN but the

construction of 1- and 2-simplices by the algorithm.

illustrate that a sequence of bursts of light has been delivered to nodes using a halogen lamp. A dashed

circumference indicates that light has been delivered to the node shown for the current event trial, i.e. a

dashed circumference marks the critical node. All other circles indicate the light was delivered during a

previous event trial. White edges/faces do not represent delivery of light to the WSN but the construction

of 1- and 2-simplices by the algorithm. For this figure, frames are in chronological sequence from left-

to-right column, top-to bottom row.



14

B. Results

Figure 9 presents the corresponding number of bytes transmitted per node for each of the twelve event

trials in Figure 8, in the same order, e.g. the top left frame of Figure 8 corresponds to the top left frame

of Figure 9. Comparing the two figures, a few observations can be made. First, the critical node and

nodes belonging to the evolving component transmit the most data. Second, neighbors of the evolving

component that are below threshold transmit very little data; generally an ACK package. Third, nodes that

are two or more hops from the evolving component, including nodes belonging to a different component,

transmit no data during computations. Thus, each event draws on nodes that are spatially tied to the event.

To quantify the aforementioned observations, mean data transmitted for each category of node over the

50 event trials is shown in Figure 10(i). The critical node, Crit, averages 54 bytes per event trial; neighbors

of the critical node above sensor threshold, v(Lk1), average 59 bytes per event trial; nodes belonging to

the same component C as the critical node, v(C)−v(Lk1)−Crit, average 54 bytes per event trial; nodes

neighboring component C, Nbr(C), average 9 bytes per event trial; nodes not neighboring component

C, v(K)− v(C)−Nbr(C), transmit precisely 0 bytes per event trial.

As shown in Figure 10(ii), transmitted data, Tx (bytes) and component size, C (number of nodes),

display a linear relationship, Tx = 57.72C +3.50, with component size accounting for about 97% of the

variance of Tx (R2 = 0.9735). Analysis of the source data indicates that the remaining variance of Tx is

explained by: number of critical node’s neighbors and data retransmission arising from lost packets.

V. DISCUSSION OF RESULTS AND CONCLUSIONS

Testbed results confirm four important features of the distributed algorithm:

1) h1, ∆h0, and ∆h1 are correctly computed in-network for each of the events investigated.

2) Local data is sufficient to maintain and update component membership for each node in the network.

3) The total data transmitted while computing an event increases linearly with component size.

4) Nodes more than 1 hop from the component undergoing change do not participate in the computation.

This research is restricted to incremental change, that is, a single node changes sensor status between two

consecutive network states. By incorporating a network token, correct computations could be executed for

non-incremental changes as well [40]. In particular, a unique network token could prevent the occurrence

of multiple critical nodes at any given state of operation, ensuring non-incremental changes could be

computed as a sequence of incremental changes. To accommodate large-scale, non-incremental change,

scalability could be improved through WSN clustering [41]. For example, by assigning cluster heads to

groups of nodes in geographical proximity, updates could be computed and propagated via cluster heads as

opposed to the flooding routine used in this research. Incorporating clustering would result in a trade-off
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Fig. 9. Total transmitted data per node for each event trial shown in Figure 8.

between the cost/time of flat routing and the resources required to maintain data about the entire cluster

at the cluster head. Finally, a more generalized notion of the link, Lk, would have to be developed to

account for the link of an entire cluster, versus individual nodes, as in this work.

While node positions are determined prior to deployment, virtual coordinate algorithms have been, and

continue to be, developed that allow for on-the-fly calculation of the relative coordinates of the nodes

in a network [42], [43]. Furthermore, while the Delaunay graph can only be computed in a centralized

fashion, there are variants of the Delaunay graph that can be computed in a distributed fashion [44].

Incremental algorithms have been developed to update a Delaunay graph when a limited number of nodes

are added to, or removed from the graph, or when nodes are not stationary [45], [46]. Therefore, in

future work/deployments, a distributed virtual coordinate algorithm could be used to deliver each node its
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Fig. 10. For the 50 event trials, (i) mean data transmitted over all events per node type, and (ii) linear regression of total data transmitted

against component size

relative coordinates and nodes could compute and store Delaunay-like neighbor information after relative

coordinates are determined, and also update this data when nodes are added to, or removed from, the

WSN.

The algorithm developed in this research only has one mechanism to deal with failed communication,

message retransmission. To extend this work, more significant communication failure, along with node

failure, need to be considered. For example, how should computations proceed if a critical node discovers

one of its neighbors is no longer transmitting messages? Such failure could occur when the critical node

is computing the simplicial complex of the evolving component, along with the component’s topology

(STATE:CRITICAL 1 of the algorithm) or when the critical node has completed computations, transmitted

updates, and is awaiting ACKs from its neighbors (STATE:UPDATE 2 of the algorithm) before entering

WAIT state. Persisting node failure would require v(Lk) and e(Lk) to be recomputed for all nodes

neighboring the failed node, and simplicial complex and topology data to be updated appropriately.

Incremental deletion events [34], and 3-dimensional deployments are not addressed in this research. A

foundation to detect incremental deletion events, when combined with a foundation to detect incremental

insertion events, provide a richer, more realistic framework to monitor environmental phenomena, since one

would not expect monotone behavior in terms of sensor status relative to threshold. More likely, a node’s

sensor value will rise above and dip below sensor threshold multiple times during a monitoring scenario,

particularly for long-term deployments. 3-dimensional deployments can potentially identify topological

phenomena that do not exist in 2-dimensions, e.g., the formation of a cavity in an evolving component. If

monitoring a toxic gas plume, being able to detect and distinguish between a cavity and a tunnel of non-

toxic air could equate to identifying and differentiating between a temporary safe zone and an evacuation

route.
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This paper presents a novel distributed homology algorithm to detect topological events using WSNs.

The approach is incremental and draws on local communication graph data stored at each node to

correctly compute changes to the first two Betti numbers, i.e. ∆h0 and ∆h1. A testbed of TelosB

motes was implemented to validate the algorithm. The algorithm demonstrated linear message complexity

with the size of the phenomena being monitored. Furthermore, localized, autonomous computation was

demonstrated: nodes associated with all other components or two hops from the component in question did

not participate in computations. Ongoing work investigates incremental deletion events, non-incremental

events, and 3-dimensional, non-planar deployments.
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